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Re: Falcon Waterfree Organic Barrier vs. Water for Sewer Gas Flux

Dear Mr. Krug:

I, Michael Hoffmann received a BA degree in chemistry in 1968 from Northwestern University
and a PhD degree from Brown University in 1974. In 1973, I was awarded an NIH post-doctoral
training fellowship in Environmental Engineering Science at the California Institute of Technology.
Over the last 28 years, I have served as a Professor of Environmental Engineering and
Environmental Chemistry since 1975. From 1975 to 1980, I was member of the faculty at the
University of Minnesota in Civil Engineering and since 1980 a member of the faculty at Caltech in
Engineering & Applied Science. For more than 15 years, I taught fundamental aspects of water and
wastewater treatment. I have published more than 220 peer-reviewed professional papers and I am
the holder of 7 patents in the subject areas of environmental chemistry and engineering. I have has
served as the Chairman of the Gordon Research Conference, Environmental Sciences: Water and as
an Associate Editor of the Journal of Geophysical Research. I am currently on the Editorial Boards
of Environmental Science and Technology and the Journal of Physical Chemistry. 1 also serve on
the Scientific Advisory Board of the Max Planck Institute for Chemistry.

In 1991, I received the Alexander von Humboldt Prize for research and teaching in
environmental chemistry. In 1995, I was presented with the E. Gordon Young Award by the
Chemical Society of Canada in recognition of his work in the field of environmental chemistry. I
have also served as a Distinguished Lecturer at the Hebrew University (Jerusalem), the University
of Sao Paulo (Brazil), and the University of Buenos Aires. In 2001, I was presented with the
American Chemical Society Award for Creative Advances in Environmental Science and
Technology for "fundamental and lasting contributions to the science of aquatic chemistry, to the
development of aquatic remediation processes, and to understanding heterogeneous and multiphase
processes in the atmospheric environment." I have been honored recently as “Davis Memorial
Lecturer in Chemistry” at the University of New Orleans and the Dodge Distinguished Lecturer in
Chemical Engineering at Yale, the Harold S. Johnston Lecturer in Physical Chemistry at the
University of California — Berkeley, and the A. R. Gordon Distinguished Lecturer in Chemistry at
the University of Toronto. In addition, I was recognized with the award of the Jack E. McKee
Medal for Groundwater Protection by the Water Environment Federation.

I have performed a detailed analysis of the relative efficiencies of a conventional water-based P-
trap vs. the Falcon Waterfree barrier of a dual layer of urine covered by a long-chain branched
aliphatic alcohol (i.e., the sealant) against the backward flux of sewer gases such as hydrogen
sulfide (H,S) and methane (CHy) gases. 1 used fundamental data on the chemical composition of
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Pasadena tapwater (pH 8) and typical human urine (pH 4.5 to 8). In addition, I factored into
account the effect of a lighter than water branched aliphatic alcohol such as 2-butyl-1-octanol (p =
0.83 gem’ %) covering a column of urine.

The flux calculations were made using a conventional two-film model, which is based Fick’s
Law of molecular diffusion, to predicted water-to-air mass transfer rates based on the fundamental
properties of H,S and methane in water (e.g., acid-base chemistry, molecular diffusion coefficients,
Henry’s Law constants, film thickness values, etc.). Based on these calculations for a range of
concentrations of total sulfide and methane dissolved in wastewater in flowing sewers typical of the
Los Angeles area, I determined that the worst case flux of H,S gas through a conventional 2” P- trap
water barrier would be 6 ng cm™ s™' (i.e., 6 nanograms per square centimeter per sccond) at PH
while at pH 8 the predicted worst-case flux through water would fall to 0.5 ng em? s For
methane, the corresponding flux at both pH conditions, under the worst-case condition, is prcdlctcd
to be 14.6 ng cm?s’,

In comparison, the branched aliphatic long-chain alcohol layer acts to retard the mass transfer of
both gases through the dual barrier system provided by Falcon Waterfree Technologies. The
con‘espondmg gas flux calculations for the dual barrier Falcon system are: 1) for H,S at pH 4.5 —
0.012 ng cm s'; this corresponds to a 500-fold reduction in the mass transfer rate compared to the
conventional water trap; 2) for H,S at pH 8.0 — 0.001 ng cm™ s™'; this also corresponds to a 500-
fold reduction in the mass transfer rate compared to the conventional water trap at pH 8; 3) for
methane at both pH values — 0.03 ng cm™ s™'; which also corresponds to another 500-fold reduction
in the flux rate.

In conclusion, the dual barrier systems provided in the Falcon Waterfree Technology urinals are
predicted to be 500 times more effective against the back migration of sewer gases as compared to
conventional P-trap water barriers. The Falcon system, which uses a column of urine topped off by
a layer of high molecular weight branched aliphatic alcohols, is a better barrier than tap water alone.
Very similar reductions in water-to-air gas transfer rates have been documented in the scientific
literature for oil coated water surfaces (Downing & Truesdale, J. Appl. Chem., §, 570-581, 1955).
Details of the calculations are shown in the attached document.

Sincerely,

N aitacl £, foffornonm—

Michael R. Hoffmann

James Irvine Professor of Environmental Science
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Falcon Waterfree Organic Barrier vs. Water for Sewer Gas Flux
By

Michael R. Hoffmann
Pasadena, California

Dr. Michael Hoffmann received a BA degree in chemistry in 1968 from Northwestern
University and a PhD degree in chemical kinetics from Brown University in 1974. In 1973, he
was awarded an NIH post-doctoral training fellowship in Environmental Engineering Science at
the California Institute of Technology. Hoffmann has served as a Professor of Environmental
Engineering and Environmental Chemistry since 1975. From 1975 to 1980, he was member of
the faculty at the University of Minnesota and since 1980 a member of the faculty at Caltech
(Engineering & Applied Science). Prof. Hoffmann taught fundamental aspects of water and
wastewater treatment for 15 years.

Dr. Hoffmann has published more than 220 peer-reviewed professional papers and is the
holder of 7 patents in the subject areas of applied chemical kinetics, aquatic chemistry,
atmospheric  chemistry, environmental chemistry, catalytic oxidation, heterogeneous
photochemistry, sonochemistry, electrochemistry, and pulsed-plasma chemistry. Dr. Hoffmann
has served as the Chairman of the Gordon Research Conference, Environmental Sciences: Water
and as an Associate Editor of the Journal of Geophysical Research. He is currently on the
Editorial Boards of Environmental Science and Technology and the Journal of Physical
Chemistry. He also serves on the Scientific Advisory Board of the Max Planck Institute for
Chemistry.

In 1991, Dr. Hoffmann received the Alexander von Humboldt Prize for his research and
teaching in environmental chemistry. In 1995, Dr. Hoffmann was presented with the E. Gordon
Young Award by the Chemical Society of Canada in recognition of his work in the field of
environmental chemistry. He has also served as a Distinguished Lecturer at the Hebrew
University (Jerusalem), the University of Sao Paulo (Brazil), and the University of Buenos Aires.
In 2001, Dr. Hoffmann was presented with the American Chemical Society Award for Creative
Advances in Environmental Science and Technology for "his fundamental and lasting
contributions to the science of aquatic chemistry, to the development of aquatic remediation
processes, and to understanding heterogeneous and multiphase processes in the atmospheric
environment."  Prof. Hoffmann was honored recently as “Davis Memorial Lecturer in
Chemistry” at the University of New Orleans and the Dodge Distinguished Lecturer in Chemical
Engineering at Yale, the Harold S. Johnston Lecturer in Physical Chemistry at the University of
California — Berkeley, and the A. R. Gordon Distinguished Lecturer in Chemistry at the
University of Toronto. In addition, Prof. Hoffmann was awarded the Jack E. McKee Medal for
Groundwater Protection by the Water Environment Federation in October 2003.

Summary of Results



[ have performed a detailed analysis of the relative efficiencies of a conventional water-based
P-trap vs. the Falcon Waterfree barrier of a dual layer of urine covered by a long-chain branched
aliphatic alcohol (i.e., the sealant) against the backward flux of sewer gases such as hydrogen
sulfide (H,S) and methane (CH.4) gases. I used fundamental data on the chemical composition of
Pasadena tapwater (pH 8) and typical human urine (pH 4.5 to §). In addition, I factored into
account the effect of a lighter than water branched aliphatic alcohol such as 2-butyl-1-octanol (p
=0.83 gcm %) covering a column of urine.

The flux calculations were made using a conventional two-film model, which is based Fick’s
Law of molecular diffusion, to predicted water-to-air mass transfer rates based on the
fundamental properties of H,S and methane in water (e.g., acid-base chemistry, molecular
diffusion coefficients, Henry’s Law constants, film thickness values, etc.). Based on these
calculations for a range of concentrations of total sulfide and methane dissolved in wastewater in
flowing sewers typical of the Los Angeles area, I determined that lheﬁ worst case flux of H,S gas
through a conventional 2" P-trap water barrier would be 6 ng cm™® s™' (i.e., 6 nanograms per
square centimeter per sccond)jal pH 4.5, while at pH 8 the predicted worst-case flux through
water would fall to 0.5 ng cm™ s For methane, the corresponding flux at both pH conditions,
under the worst-case condition, is predicted to be 14.6 ng cm™ s ™.

In comparison, the branched aliphatic long-chain alcohol layer acts to retard the mass transfer
of both gases through the dual barrier system provided by Falcon Waterfree Technologies. The
corresponding gas flux calculations for the dual barrier Falcon system are: 1) for H,S at pH 4.5 —
0.012 ng cm™ s™'; this corresponds to a 500-fold reduction in the mass transfer rate compared to
the conventional water trap; 2) for H,S at pH 8.0 — 0.001 ng cm” s™'; this also corresponds to a
500-fold reduction in the mass transfer rate compared to the conventional water trap at pH 8; 3)
for methane at both pH values — 0.03 ng em” s which also corresponds to another 500-fold
reduction in the flux rate.

In conclusion, the dual barrier systems provided in the Falcon Waterfree Technology urinals
are predicted to be 500 times more effective against the back migration of sewer gases as
compared to conventional P-trap water barriers. The Falcon system, which uses a column of
urine topped off by a layer of high molecular weight branched aliphatic alcohols, is a better
barrier than tap water alone. Very similar reductions in water-to-air gas transfer rates have been
documented in the scientific literature for oil coated water surfaces (Downing & Truesdale, J.
Appl. Chem., §, 570-581, 1955). Details of the calculations are shown below.

Fundamental Relationships used to calculate flux rates through water or
urine/sealant trap systems:

Calculation of Pyj»s assuming available data on pH and total dissolved sulfide (St) in aqueous
phase:

[S(-ID)] = [HaS(aq)] +[HS ] + [S7]

Assume that aqueous phase is in equilibrium with gas at fixed Pyas,
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Mass flux across an interface using a classical two-film theory model

F = -pC
dz
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Critical Constants

Henry's Law data — H,S

S
Henry's Law constant (water solution) H/ \H

k°, = Henry's law constant for solubility in water at 298.15 K (mol/kg*bar)

T e = — 7 o
Lol fll((gﬂ’-‘ bar) % d(]n(k;{.l)g;;d(lfT] gMethod' Reference Comment
- | ! De Bruyn,
0.087 2100.. M Swartz. et
: | ‘al.. 1995
; ' Lide and
0.10 2000.. L Frederikse,
;, | f 11995
2 ! Only the tabulated data between T = 273. K and T = 303.
| E ! _ K from Dean. 1992 was used to derive ky and -A ky/R.
; Above T = 303. K the tabulated data could not be
' ! ‘parameterized by equation (reference missing) very well.
0.10 2300. Q@ Dean, 1992 The partial pressure of water vapor (needed to convert g

i

‘some Henry's law constants) was calculated using the
formula given by Sander. Lelieveld, et al.. 1994, The

quantities A and o from Dean, 1992 were assumed to be

W% identical.
Carroll and
2200..
(}'IU_- “2(]0'§ S Mather, 1989
| _; ‘Kavanaugh
0.097 2200.. X  land Trussell,
' 11980 ;
0.10 2100., L Edwards, |




Maurer. et

al., 1978
Wilhelm,
0.10 2100. L. Battino, et
al.,, 1977
...... s ———
Hine and !
0.10 R Weimar,
11965 f
. Loomis, The value is taken from the compilation of solubilities by |
00T1C 2300. ) : : |
0-001 )_ : ; ~ 1928 W. Asman (unpublished). |
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Henry's Law data - Methane

Henry's Law constant (water solution)

k®s = Henry's law constant for solubility in water at 298.15 K (mol/kg*bar)

K% | d(n(k))/d(1/T)
(mol/kg*bar) (K) Method f Reference
Lide and
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The parameterization given by Lide and Frederikse, '
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Only the tabulated data between T =273. Kand T =
303. K from Dean, 1992 was used to derive ky and -A
ki/R. Above T = 303. K the tabulated data could not be |
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convert some Henry's law constants) was calculated
using the formula given by Sander, Lelieveld, et al.,
1994, The quantities A and o from Dean, 1992 were
“assumed to be identical.
Yaws and Yang, 1992 give several references for the
Henry's law constants but don't assign them to specific
‘species.
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pH of Urine - 4.5 to 8

Urine pH is used to classify urine as either a dilute acid or base solution. Seven is the point of
neutrality on the pH scale. The lower the pH, the greater the acidity of a solution; the higher the
pH, the greater the alkalinity. The glomerular filtrate of blood is usually acidified by the kidneys
from a pH of approximately 7.4 to a pH of about 6 in the urine. Depending on the person's acid-
base status, the pH of urine may range from 4.5 to 8. The kidneys maintain normal acid-base
balance primarily through the reabsorption of sodium and the tubular secretion of hydrogen and
ammonium ions. Urine becomes increasingly acidic as the amount of sodium and excess acid
retained by the body increases. Alkaline urine, usually containing bicarbonate-carbonic acid
buffer, is normally excreted when there is an excess of base or alkali in the body. Secretion of an
acid or alkaline urine by the kidneys is one of the most important mechanisms the body uses to
maintain a constant body pH.

A highly acidic urine pH occurs in:
e Acidosis
« Uncontrolled diabetes
« Diarrhea
e Starvation and dehydration
« Respiratory diseases in which carbon dioxide retention occurs and acidosis develops
A highly alkaline urine occurs in:
e Urinary tract obstruction
« Pyloric obstruction
« Salicylate intoxication
e Renal tubular acidosis
e Chronic renal failure

« Respiratory diseases that involve hyperventilation (blowing off carbon dioxide and the
development of alkalosis)

In people who are not vegetarians, the pH of urine tends to be acidic. A diet rich in citrus fruits,
legumes, and vegetables raises the pH and produces urine that is more alkaline. Most of the
bacteria responsible for urinary tract infections make the urine more alkaline because the bacteria
split urea into ammonia and other alkaline waste products. The urine pH varies in different types
of acidosis and alkalosis. Control of pH is important in the management of several diseases,
including bacteriuria, renal calculi, and drug therapy.

The formation of renal stones is related to the urine pH. Patients being treated for renal calculi
are frequently given diets or medications to change the pH of the urine so that kidney stones will



not form. Calcium phosphate, calcium carbonate, and magnesium phosphate stones develop in
alkaline urine; when this occurs, the urine is kept acidic. Uric acid, cystine, and calcium oxalate
stones precipitate in acidic urine; in this situation, the urine should be kept alkaline or less acidic
than normal. Drugs such as streptomycin, neomycin, and kanamycin are effective in treating
urinary tract infections if the urine is alkaline. During treatment with sulfa drugs, alkaline urine
helps prevent formation of sulfonamide crystals.

Here are important points to remember about urinary pH:

e An accurate measurement of urinary pH can be done only on a freshly voided specimen.
If urine must be kept for any length of time before analysis, it should be refrigerated.

e During sleep, decreased pulmonary ventilation causes respiratory acidosis. As a result, a
first waking urine specimen is usually highly acidic.

e Bacteria causing a urinary tract infection or bacterial contamination will produce alkaline
urine.

e A diet rich in citrus fruits, most vegetables, and legumes will keep the urine alkaline.

e A diet high in meat and cranberry juice will keep the urine acidic.

« Urine pH is an important screening test for the diagnosis of renal disease, respiratory
disease, and certain metabolic disorders.

o If urine pH is to be useful. it is necessary to use pH information in comparison with other
diagnostic information.

Data on the ranges of total sulfide (i.e., [S-(II)]) and methane in wastewater systems are taken
from the literature.

Sewer Gas
Sewer gas is a complex mixture of toxic and non-toxic gases that can be present at varying levels

depending upon the source. It is formed during the decay of household and industrial waste.
Highly toxic components of sewer gas include hydrogen sulfide and ammonia.

Sewer gas also contains methane, carbon dioxide, sulfur dioxide, and nitrous oxides. In addition,
chlorine bleaches, industrial solvents, and gasoline are frequently present in municipal and
privately owned-sewage treatment systems.

Sewer gas can enter a home through a floor drain, from a leaking or blocked plumbing roof vent,
or (if the gases are in soil adjacent to the house) through cracks in foundations. Sanitary and
farm workers can be exposed to sewer gas during the cleaning and maintenance of municipal
sewers, manure storage tanks, and home septic tanks.

The principal risks and effects associated with exposure are:

» Hydrogen sulfide poisoning. Exposure to low levels of hydrogen sulfide causes irritation
of the eyes and respiratory tract. Other symptoms include nervousness, dizziness, nausea,



headache, and drowsiness. This gas smells like rotten eggs, even at extremely low
concentrations. Exposure to high concentrations can interfere with the sense of smell,
making this warning signal unreliable. At extremely high levels, hydrogen sulfide can
cause immediate loss of consciousness and death.

e Asphyxiation. Methane acts like carbon monoxide, blocking oxygen in the blood, and can
similarly cause suffocation and death at high levels. Exposure to lower levels can
produce flu-like symptoms such as headache, nausea, and drowsiness. Breathing
undiluted sewer gas, even for short periods, as in a municipal sewer line or a manure
storage tank, can resultin suffocation and death. Sewer gas diffuses and mixes into
indoor air, and will be most concentrated where it is entering. It can accumulate in
basements.

« Explosion and fire. Methane and hydrogen sulfide are flammable and highly explosive.

Symptoms of headache, nausea, dizziness, or drowsiness may indicate exposure to an odorless
gas like methane or carbon monoxide, or to hydrogen sulfide, which smells of rotten eggs.
Persons experiencing severe symptoms should seek immediate medical care.

Measured Methane Concentration in Anaerobic Wastewaters

Dissolved Methane (mg/l)
Raw leachate 9.980
Aeration tank | 4.610
Aeration tank 2 1.840
Aeration tank 3 0.486
Aeration tank 4 0.133
Aeration tank 5 0.102
Final effluent 0.095
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The corrosion of sewers and the control of odor are the major operational and
maintenance problems in wastewater collection systems. The generation of hydrogen sulfide and
subsequent sulfuric acid results from microbially mediated reactions, by sulfate-reducing
bacteria (SBR) and sulfide-oxidizing bacteria. This review covers pertinent information about
sulfate reduction-induced problems in general and SBR in particular. Metabolism with respect to
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than one year to clarify the main factors governing hydrogen sulfide generation in pressure
mains. The effects of temperature, organic matter, and sulfate on sulfide generation rate were
investigated based on observed values. The sulfide generation rate depended significantly on
wastewater temperature. It was confirmed not empirically but experimentally that the effect of
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reductions were largely due to the effective precipitation of sulfide with Fe(IIl) and Fe(Il) and
the limited volatilization of H2S, respectively. Oxidation of sulfide in the presence of Fe(II) and
minute amounts of O-2 may have occurred. A combination of Fe(III) and Fe(Il) proved more
effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to
undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend
ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by
precipitating free sulfide and reducing its release to the sewer headspace as H2S. A mechanism
to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.
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Wastewater quality changes in the carbon and sulfur cycles in pressure sewers and in a
gravity sewer that followed a pressure sewer were studied. The primary focus was on changes in
chemical oxygen demand (COD) components during transports which were investigated using
oxygen uptake rate measurements and volatile fatty acid analyses. Sulfide formation in the
pressure sewers and sulfide oxidation in the gravity sewer were also studied. Anaerobic
hydrolysis, which resulted in a net production of readily biodegradable substrate in the pressure
sewers, was quantified. A process model description. which included the main aerobic and
anaerobic processes in the water phase and in the biofilm, was presented; model parameters were
determined based on calibration. This simulation procedure made it possible to consider
integrated aspects of hydrogen sulfide and variations in COD components in sewers such as odor
and sewer corrosion by hydrogen sulfide and the inadequacy of advanced wastewater treatment
because of the input of low- quality wastewater. It is possible to include wastewater quality
changes and, thereby, process aspects for sewer design and operation.

Vapor Pressure Prediction for 2-butyl-1-octanol

AS = 36.6 + 8.31In(T,,) =88.50756
BP =516.15

AH,.p = AS(T,) = 45679.28

8.2764
In(Po/P;) = (AH/R)(I/T1 - 1/T2) 7.824368
Pyap (25 °C) = 3.94E-04 atm 0.299188 torr

n/v = P/RT = 0.012244 2.281379 g/L



